

Multi-constrained Routing Based on Simulated Annealing

Yong Cui1, Ke Xu1, Jianping Wu1, Zhongchao Yu2, Youjian Zhao1
1. Department of Computer Science, Tsinghua University, Beijing, P.R.China, 100084

2. Department of Computer Science, University of Maryland, College Park, MD 20742

{cy, xuke}@csnet1.cs.tsinghua.edu.cn; jianping@cernet.edu.cn; yuzc@cs.umd.edu; zhaoyj@csnet1.cs.tsinghua.edu.cn

Abstract-Multi-constrained quality-of-service routing (QoSR) is
to find a feasible path that satisfies multiple constraints
simultaneously, as an NPC problem, which is also a big challenge
for the upcoming next-generation networks. In this paper, we
propose SA_MCP, a novel heuristic algorithm, by applying
simulated annealing to Dijkstra's algorithm. This algorithm
first uses a nonlinear energy function to translate multiple QoS
weights into a single metric and then seeks to find a feasible path
by simulated annealing. The paper outlines simulated annealing
algorithm and analyzes the problems met when we apply it to
QoSR. Extensive simulations demonstrate that SA_MCP has
good scalability regarding both network size and the number of
QoS constraints with high performance. Furthermore, when
most QoS requests are feasible, the running time of SA_MCP is
about O(k(m+nlogn)), which is only k times that of the traditional
Dijkstra's algorithm, where k is the number of QoS constraints.
Keywords-Simulated annealing, energy function, QoS routing,

multiple constraints, scalability

I. INTRODUCTION

Providing different quality-of-services (QoS) support for
different applications in the Internet is a challenging issue [1],
in which QoS Routing (QoSR) is one of the most pivotal
problems [2]. The main function of QoSR is to find a
feasible path that satisfies multiple constraints for QoS
applications. QoS constraints can be divided into link
constraints and path constraints. The link constraints of a path
can be converted to the constraints of the bottleneck link in the
path, such as bandwidth. It can be easily dealt with in a
preprocessing step by pruning all links that do not satisfy these
constraints and computing a path from the rest sub-graph.
The path constraint is the restriction of each link along the path,
such as delay. We will focus on the path constraint problem
in this paper.

Many heuristics have been proposed for the
multi-constrained QoSR problem because of its
NP-completeness [4], [5]. However, these algorithms have
some or all of the following limitations [2]: (1) High
computation complexity prevents their practical applications;
(2) Low performance means that these algorithms sometimes
cannot find a feasible path even when one does exist. (3)
Some algorithms work only for a specific network. This
paper proposes a novel heuristic SA_MCP (Simulated
Annealing for Multi-Constrained Path problem).

This algorithm first uses a nonlinear energy function to
translate multiple QoS constraints into a single metric. The
shortest path tree (SPT) of the whole network graph is then

computed by our improved Dijkstra's algorithm with a nonzero
probability P(T) to select a non-optimal path, where T is the
temperature for simulated annealing. The algorithm then
labels each node according to the current SPT to compute a
newer SPT with a lower temperature T. When T decreases to

0→T , we have 0)(lim 0 =→ TPT . Based on the theory
about simulated annealing, SA_MCP is guaranteed to find a
feasible path when one exists. Extensive simulations also
show that SA_MCP performs well in finding a feasible path
with high probabilities.

The rest of this paper is organized as follows. In Part II we
give the problem formulation and summarize the simulated
annealing. SA_MCP is proposed in Part III, and extensive
simulations show the performance evaluation in Part IV.
Finally, conclusions appear in Part V.

II. BACKGROUND INFORMATION

A. Problem Formulation
A network is represented by a directed graph G(V,E), where

V is the node set and an element Vv ∈ is called a node
representing a router. E is the set of edges representing links,
which connect the routers. An element Eeij ∈ represents
an edge =e ji vv → of G. In QoSR, each link has a group
of independent weights),(),((21 ewew))(, ewk� , which is
also called QoS metric)(ew . For a path

→= 0vp �→1v nv→ and kl ≤≤1 , the weight
+∈ Rewl)(satisfies the additive property if

∑ = − →= n
i iill vvwpw 1 1)()(.

Definition 1. Multi-constrained path
For a given graph),(EVG , source node s , destination

node t , 2≥k and constraint vector),,,(21 kcccc �= , the
path p from s to t is called multi-constrained path (MCP)
if ll cpw ≤)(for any kl ≤≤1 . We write cpw ≤)(in
brief.

Note)(ew and c are also k-dimension vectors. For a
given QoS request and its constraints c , QoSR seeks to find
the path p based on the present network-state information,
which satisfies cpw ≤)(. Dijkstra proposed the shortest
path tree (SPT) algorithm, which has a low time complexity
[6]. However, QoSR problem is related to multiple weights
at the same time. Thus the problem is changed to an NPC
one that the original Dijkstra’s algorithm cannot solve in

∗ Supported by: (1) the National Natural Science Foundation of China (No.
90104002; No. 69725003); (2) the National High Technology Research and
Development Plan of China (No. 2002AA103067).

1718
0-7803-7802-4/03/$17.00 © 2003 IEEE

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:08:02 UTC from IEEE Xplore. Restrictions apply.

polynomial time. In this case, one feasible method is to
translate the multiple weights into a single weight, as follows:

Definition 2. Energy Function
We call))((max)(1 ll

k
l cpwpg == the energy function of

path p, where),,,(21 kcccc �= is the constraint vector of a
specific QoS application.

Because)(pg is a nonlinear function, Dijkstra's algorithm
is not guaranteed to find a path with least energy in polynomial
time. Therefore, we propose a novel heuristic to the
NP-complete QoSR problem by applying simulated annealing.

B. Simulated Annealing
The research on statistical mechanics shows that in

temperature T, the probability for a molecule of substance to
stay in the state r satisfies Boltzmann's distribution:

))(exp(
)(

1)}(Pr{
Tk
rE

TZ
rEE

B
−== (i)

E is the stochastic variable representing the energy of a
molecule. E(r) is the energy of a molecule that stays in the
state r. T is the temperature. kB is Boltzmann's constant and
Z(T) is the normalized factor.

Annealing is a physical process. After a metal body is
heated, when it cools slowly, the molecule of the body stays in
different states with different probabilities, which satisfies
Boltzmann's distribution. Annealing usually requires the
following two conditions:

(1) The initial temperature is high enough so that the
probabilities for a molecule to stay in arbitrary states are
approximately equal. If we have

BkrET)(0 >> , (ii)

then 00)(≈TkrE B . As a result, ≈=)}(Pr{ rEE
)0(1 TZ , i.e. the probabilities are approximately equal.

(2) When it cools down so that temperature becomes 0
degree, all of the molecules will stay in the least energy state
with the probability being one. If r* presents the least energy
state, when 0→T , we have



 =

==
others

rr
rEE

0
*1

)}(Pr{ . (iii)

The idea of simulated annealing was first proposed by
Metropolis [7] and was applied to combinational optimization
successfully in 1983 [8]. In its basic form, it first generates
an initial solution as the current solution. It then selects
another solution in the neighborhood of the current solution
and replaces the current solution with the new one. The same
process continues iteratively for many times. Although the
goal is to find an optimal solution, it selects a non-optimal
solution with a non-zero probability P(T) to avoid being stuck
in a local optimization each time. When the temperature
decreases, P(T) also decreases. When 0→T , it is
guaranteed to find an global optimal solution since P(T)=0.

III. SIMULATED ANNEALING BASED HEURISTIC

A. The Idea of Our SA_MCP
Because only an end-to-end path is a solution in routing

computation, the main problem of using simulated annealing
for QoSR is how to iterate to another solution from the current
solution in its neighborhood. To achieve this, we propose a
method with iteration. In the process of iteration, we use
Dijkstra's algorithm to guarantee that the new solution is an
end-to-end path. When we calculate the SPT by Dijkstra's
algorithm, we select with probability P(T) a node that is not
the current optimal node. Thus, our SA_MCP can overcome
the local optimization problem that all heuristics face.

We assume that each node in the network maintains a
consistent copy of the global network state information. For
a given QoS request from s to t, node s uses our SA_MCP to
seek a feasible path. It first uses Dijkstra's algorithm to
calculate the least-hop SPT rooted by s and marks each node in
the network. Then it uses improved Dijkstra's algorithm to
label each node in iteration. In each iteration, SA_MCP
computes new labels based on the labels computed last time.
At the same time, it selects different links with different
probabilities P(T) including non-optimal links, where

0)(lim 0 =→ TPT satisfies the formula (iii). After each of
iterations, the temperature T decreases. When the algorithm
iterates enough times, we guarantee 0→T .

B. Pseudo-code Description
Fig. 1 and Fig. 2 show the pseudo-code of the algorithm,

where SA_MCP is the main function. The input of SA_MCP
includes a given graph with multiple QoS weights, a QoS
request from s to T and a constraint vector),,,(21 kcccc �= .
In addition, we can configure the initial temperature (T0), the
gradient of cooling down the temperature (grad) and the
iteration time (I). If the k-dimensional weight d[t] of the
forward least energy path from s to T satisfies the constraint c,
the algorithm returns the path successfully. Otherwise, it
refuses the request. Table I shows the notations used in the
pseudo-code.

1. Function SA_MCP
In function SA_MCP, we first use Dijkstra's algorithm to

compute the least hop SPT rooted by s (Line 2), where the
initial solution is the path along the SPT from s to t. We then
compute the new SPT by simulated annealing (SA_Dijkstra)
backwards and forwards including (1) computing the SPT
rooted by T (Line 5); (2) computing the SPT rooted by s (Line
8). After the whole SPT is computed each time by Dijkstra's
algorithm or SA_Dijkstra, d[.] is updated to save the newly
computed weights from the new SPT to source s (Line 12-13
in function SA_Dijkstra). SA_Dijkstra computes SPT based
on the d[.] updated last time (Line 1 in function SA_Relax).
In addition, after a new SPT is constructed, the path along this
SPT from s to T is judged to see whether it satisfies the
constraint c. If it does, the algorithm then returns the path
successfully (Line 3, 6 and 9). We need to set the
temperature T for simulated annealing to construct SPT in
SA_Dijkstra each time (Line 7 and 10).

2. Function SA_Dijkstra
Based on the original Dijkstra's algorithm [6], we propose

the SA_Dijkstra function, which seeks the least energy tree by
simulated annealing. The function first initializes variables

1719

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:08:02 UTC from IEEE Xplore. Restrictions apply.

(Line 1-5). Then when NB is not empty (Line 6), it selects
the optimal node u in NB by simulated annealing (Line 7) and
adds the selected node to the current partial SPT (Line 8).
Finally, it relaxes u's neighbors that are not in the SPT (Line
9-11). After it creates the whole SPT, the weight r[t] of the
path along this SPT from root to each node T is saved in the
global variable d[t] for computing new SPT next time (Line
12-13).

3. Function SA_Cheapest
This function presents the idea of simulated annealing: a

non-optimal node will be selected with a certain probability
and the probability decreases to zero when temperature T
decreases enough. In the first line of SA_Cheapest,

lll
k
l cvdvr])[][(max 1 += is the energy of a path defined by

definition 1.][vrl is the forward weight, i.e. the l 'th weight
of the path from the root of the current SPT to node v.][vdl
is the backward weight, i.e. the l 'th weight of the path from

node v to the root of the old SPT calculated last time. The
backward weight is saved when the old SPT is computed last
time (Line 12-13 in function SA_Dijkstra). SA_Cheapest
first selects the least energy g* of the neighbors of the current
SPT (Line 1). It then computes the energy E(v) for simulated
annealing (Line 2-3), which guarantees the least energy to be 0.
Then the normal factor Z(T) in formula (i) is calculated (Line
4). Finally, a node u, which will be added to the partially
created SPT, is selected according to the probability
distribution in formula (i) (Line 5-9).

4. Function addNode
Similar to the original Dijkstra's algorithm, when node u is

added to the partially created SPT, we use this function to
change the set NB, which is the neighborhood of node u.
This includes two parts: deleting node u from NB (Line 1), and
adding u's neighbors that are not in the current SPT to NB
(Line 3-5).

5. Function SA_Relax
We relax node v with node u being v's parent. The energy

SA_Dijkstra(G,root,T)
1. FOR each node T in G
2. g[t]=INFINITY
3. SPT={root}
4. r[root]=0
5. NB={root's neighbors}
6. WHILE NB is not empty
7. u=SA_Cheapest(NB, T)
8. addNode(SPT,u,NB)
9. FOR each node v in u's neighbor
10. IF v is not in SPT THEN
11. SA_Relax(u, v)
12.FOR each node T in G
13. d[t]=r[t]

SA_MCP(G=(V,E), s, t, c, T0, grad, I)
1. T=T0
2. Dijkstra(G,s); //get an initial solution
3. IF (d[t]<c) RETURN this path
4. FOR(i=0; i<I; i++)
5. SA_Dijkstra(G,t,T); // min g(p)
6. IF (d[s]<c) RETURN this path
7. T=T/grad
8. SA_Dijkstra(G,sT); // min g(p)
9. IF (d[t]<c) RETURN this path
10. T=T/grad
11.RETURN failure

Fig. 1. Pseudo-code of SA_MCP

TABLE I
NOTATIONS IN THE PSEUDO-CODE OF SA_MCP

Symbol Meanings Symbol Meanings
T0 initial temperature root the root node for calculating the current SPT

)(vE the energy of node v in formula (i) d[u] backward weights: the k-dimensional weights of the path
along the old SPT from its root to u

grad gradient for decreasing temperature v a child node of node u
I maximum number of iterations Πr[v] the precedent node of node v
Dijkstra(G,s) original Dijkstra's algorithm for SPT rooted by s g[u] the energy of node u
u an intermediate node NB the set of the neighbors of the current SPT
SA_Dijkstra
(G,s,T)

a heuristic for SPT rooted by s based on simulated
annealing, where T is the temperature r[u] forward weights: the k-dimensional weights of the path

along the current SPT from its root to u
Z the normal factor in formula (i) g* a locally minimal energy
c k-dimensional constraints of a QoS request SPT a partially created SPT

SA_Cheapest(NB, T)
1. g*= lll

k
lNBv cvdvr])[][(maxmin 1 +=∈

2. FOR each v in NB
3.)(vE = lll

k
l cvdvr])[][(max 1 += -g*

4. ∑ ∈ −= NBv TvEZ)/)(exp(

5. x= ×Z uniform(0,1)
6. sum=0
7. FOR each u in NB
8. sum=sum+)/)(exp(TuE−
9. IF sum>=x THEN RETURN u

addNode(SPT,u,NB)
1. NB=NB-{u}
2. SPT=SPT+{u}
3. FOR each node v in u's neighbor
4. IF v is not in SPT THEN
5. NB=NB+{v}

SA_Relax(u, v)
1. tmp= llll

k
l cvdvuwur])[),(][(max 1 ++=

2. IF g[v]>tmp THEN
3. g[v]=tmp
4. r[v]=r[u] + w(u,v)
5. Πr[v]=u

Fig. 2. Sub-functions of SA_Dijkstra

1720

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:08:02 UTC from IEEE Xplore. Restrictions apply.

of v via u is computed (Line 1). If this new energy of v is
smaller than the old one (Line 2), node v will be relaxed to use
the new energy (Line 3), the forward weight (Line 4) and the
precedent node (Line 5).

C. Complexity and Parameters
We now analyze the computation complexity of SA_MCP.

In the network graph G(V,E) with k metrics, we assume m=|E|
is the number of edges and n=|V| is the number of nodes.
Since the computation complexity of the improved Dijkstra's
algorithm is O(m+nlogn), that of function SA_Dijkstra is
O(km+knlogn). As a result, including the recursion, the
overall computation complexity of SA_MCP is O(Ik(m+
nlogn)), where I is the maximum number of iterations.
Because the feasibility of a path newly found is checked before
the next iteration, when most of the QoS requests are feasible,
only some of them need to iterate for multiple times.
Therefore, the above complexity is the worst-case one. In
fact, the running time of our SA_MCP is almost independent
of the maximum number of iterations as we are going to show
in part IV.

Simulated annealing requires selecting a new solution
randomly enough at the beginning, i.e. a high enough initial
temperature T0. Because the energy E(v) is often much less
than 1 in SA_MCP, it suffices to set T0=1 to satisfy formula
(ii). In addition, simulated annealing also requires that when
the temperature 0→T , all of the molecules stay in the state
with the least energy. Thus, in order to decrease the
temperature quickly, we select grad=10 according to the
geometric proportion. In this way, after 2I times of iteration,
the temperature IIT 210)2(−= <<E(v) satisfies formula (iii).
The following simulations show that such parameters achieve
high performance.

IV. PERFORMANCE EVALUATION

About the performance of our algorithm, we will show (1)
the relationship between the distribution of QoS constraints
and the performance of our SA_MCP with only two
constraints, and (2) the performance with multiple constraints.
In each part, SA_MCP is compared with H_MCOP [9], [10],
which is a good heuristic in the literature.

In each experiment, we simulate purely random network
graphs with N nodes [11] and generate k weights for each link,
where)(ewl ~uniform[1,1000] for kl ,,2,1 �= and)(ewl
has no correlation for different e or l . We simulate 10
graphs with N being 50, 100, 200 and 500, respectively. In
each graph, we select the source-destination node pair (s,t) 100
times (a particular node may be selected more than once),
where we guarantee that the minimum hop is not less than two.
Each source node s uses SA_MCP to compute the least energy
path for different numbers of iterations respectively. For
performance evaluation, we use the success ratio (SR), which
is defined as the ratio of the number of requests satisfied using
a heuristic algorithm and the total number of requests
generated. We first get SR of the 100 (s,t) pairs in one graph,
and then calculate the average SR of 10 graphs with same
number of nodes.

A. The Performance with Two Constraints
The evaluation depends heavily on the generated constraints

of the requests, e.g. the distribution of constraints. Therefore,
based on the normalized weights in the whole graph, for a
given request pair),(ts , we use the method of weighted ratio
simulation to generate the constraints. First, we assume that
each QoS application concerns the weight lw to la degree.
Then we use Dijkstra's algorithm to find the path p(s,t) that
minimizes the linear energy =),(tsg ∑ =

k
l ll tswa1),(. Finally,

we take the weights of the path p(s,t) as the QoS constraints of
the pair),(ts , i.e. c(s,t)= w(p(s,t)).

In the case of two dimensions, we let]1,0[1 ∈a and

12 1 aa −= for simplicity. Because different QoS
applications concern a weight to different degrees, we use the
following three methods to generate a . (1) NORMAL:

1a ~normal(0.5,0.16); (2) UNIFORM: 1a ~uniform(0,1); (3)
AB_NORMAL: 1a ~normal(0,0.16) and]5.0,0[1 ∈a . In
order to guarantee that the difference between 1a and the
expectation are less than 0.5 with the probability of 99.7%, we
set the standard deviation to be 0.16 in NORMAL and
AB_NORMAL distributions.

The relation between the maximum number of iterations and
the performance of our SA_MCP is shown in Fig. 3 against
H_MCOP. The x-axis is the method to generate QoS
constraints, and the y-axis is the success ratio (SR)
representing the performance of heuristic routing. With only
a few iterations (e.g. I=1), SA_MCP does not perform well.
The main reason is that T0=1 is much greater than energy E(v)
and the strong randomicity cannot guarantee an optimal path.
With more iterations, the performance of SA_MCP increases
rapidly and reaches almost 100%. This shows that the
simulated annealing can increase the performance of QoSR
greatly.

H_MCOP has different performance with different QoS
constraints. The reason is that when it computes the SPT for

93
94
95
96
97
98
99

100
101

normal uniform ab_normal

SR

I=1 I=2 I=3 H_MCOP

88
90
92
94
96
98

100
102

normal uniform ab_normal

SR

I=1 I=2 I=3 H_MCOP

 a. N=50 b. N=100

86
88
90
92
94
96
98

100
102

normal uniform ab_normal

SR

I=1 I=2 I=3 H_MCOP

75
80
85
90
95

100
105

normal uniform ab_normal

SR

I=1 I=2 I=3 I=4 H_MCOP

 c. N=200 d. N=500

Fig. 3. Performance evaluation with two constraints

1721

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:08:02 UTC from IEEE Xplore. Restrictions apply.

the first time, it concerns the two weights to the same degree.
Therefore, when applications concern the two weights to the
same degree (normal distribution in Fig. 3), H_MCOP
performs well; otherwise, it will degrade, especially in the
ab_normal distribution. On the contrary, our SA_MCP
performs well in all conditions, including different
distributions of QoS constraints and different network scales.

B. Performance with Multiple Constraints
In order to study the relation between the maximum number

of iterations and the performance of SA_MCP, we use the
following method to generate the constraints for a given (s,t).
We first take the random number)1,0(~ uniformbl for

kl ,,2,1 �= and calculate ∑ == k
l lll bba 1 . We then

construct the least energy path from s to T according to the
energy function ∑ ==′ k

l ll pwapg 11))(()(and take the weights
of the path as the constraints of the given (s,t), i.e.

)(),(ipwtsc = .
Fig. 4 shows the performance for multiple constraints,

where the x-axis is the number of constraints and the y–asix is
SR. SA_MCP performs well for large k, while H_MCOP
does not. Furthermore, our SA_MCP has good scalability on
the size of network with multiple constraints.

C. Analysis of Running Time
In order to analyze the relationship between the running

time and the maximum number of iterations, we measure the
running time of SA_MCP on a PC running MS Windows 2000
with a Pentium III 933 CPU and a 256M memory. As an
example, Table II shows the running time with N=500 and
k=10. In most cases the heuristic can find a feasible path with
only one iteration. Therefore, the running time depends on
the maximum number of iterations lightly instead of the

linearity in theory, as shown in Table II. Such a relation
further confirms the conclusion of Fig 4, i.e. a feasible path
can be found with only a few iterations.

V. CONCLUSION

For the NP-completeness of multi-constrained QoSR
problem, there is no efficient algorithm up to now. We
propose a novel heuristic SA_MCP based on simulated
annealing. The paper summarizes simulated annealing, and
analyzes both the difficulty and our solution by applying it to
the routing computation. Our SA_MCP first takes the
least-hop SPT as the initial solution and marks all of the nodes
in the network. It then computes a new SPT and sets new
labels again in simulated annealing iteration mode, until the
path along the new SPT is feasible or maximum iteration time
is reached. In each iteration, it uses the current labels to seek
the least energy SPT with a nonlinear energy function.
Extensive simulations show that SA_MCP has high
performance and good scalabilities with respect to both
network scale and constraint number (k). Furthermore, it is
insensitive to the distribution of QoS constraints. In addition,
although the worst-case computation complexity is
O(Ik(m+nlogn)), which is proportional to the maximum
iteration time I, the running time is about O(k(m+nlogn)),
which is independent of I.

REFERENCE
[1] X. Xiao and L. M. Ni, Internet QoS: A big picture, IEEE Network, vol. 13,

no. 2, pp. 8–18, March-April 1999.
[2] Y. Cui, J. P. Wu, K. Xu, et al. Research on internetwork QoS routing

algorithms: a survey. Chinese Journal of Software, vol.13, no.11,
pp.2065—2075, 2002.

[3] S. Chen and K. Nahrstedt, An overview of quality-of-service routing for
next-generation high-speed networks: problems and solutions, IEEE
Network, vol. 12, no. 6, pp. 64–79, Nov. 1998.

[4] M. S. Garey, D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, New York, 1979.

[5] Z. Wang and J. Crowcroft. Quality-of-service routing for supporting
multimedia applications., IEEE Journal on Selected Areas in
Communications, vol. 14, no. 7, pp. 148–154, Sept. 1996.

[6] E. Dijkstra, A note on two problems in connexion with graphs.
Numerische Mathematik, vol.1, pp. 269-271, 1959.

[7] N. Metropolis, A. Rosenbluth, M. Rosenbluth, et al. Equation of state
calculations by fast computing machines. Journal of Chemical Physics,
vol. 21, pp. 1087-1092, 1953.

[8] S. Kirkpatrick, J. C. D. Gelatt, M. P. Vecchi. Optimization by simulated
annealing. Science, vol. 220, pp. 671-680, 1983.

[9] T. Korkmaz, M. Krunz, Multi-constrained optimal path selection. IEEE
INFOCOM'01, vol. 2, pp. 834 -843, 2001.

[10] G. Feng, C. Douligeris, K. Makki, et al. Performance evaluation of
delay-constrained least-cost QoS routing algorithms based on linear and
nonlinear lagrange relaxation. IEEE ICC'02, 2002.

[11] E. W. Zegura, K. L. Calvert, M. J.Donahoo, A quantitative comparison of
graph-based models for Internet topology. IEEE/ACM Transactions on,
Networking, vol. 5, no. 6, pp. 770–783, Dec. 1997.

84
86
88
90
92
94
96
98

100
102

2 3 5 10 k

SR

I=1 I=2 H_MCOP

84
86
88
90
92
94
96
98

100
102

2 3 5 10 k

SR

I=1 I=2 H_MCOP

 a. N=50 b. N=100

90
92
94
96
98

100
102

2 3 5 10 k

SR

I=1 I=2 H_MCOP

90
92
94
96
98

100
102

2 3 5 10 k

SR
I=1 I=2 H_MCOP

 c. N=200 d. N=500

Fig. 4. Performance evaluation with multiple constraints

TABLE II
THE RUNNING TIME OF PROPOSED SA_MCP

the maximum number of
iterations I=1 I=2 I=3 H_MCOP

running time(millisecond) 19.54 20.36 21.07 21.90

1722

Authorized licensed use limited to: Tsinghua University. Downloaded on June 16,2022 at 05:08:02 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

