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Abstract-Multi-constrained quality-of-service routing (QoSR) is 
to find a feasible path that satisfies multiple constraints 
simultaneously, as an NPC problem, which is also a big challenge 
for the upcoming next-generation networks.  In this paper, we 
propose SA_MCP, a novel heuristic algorithm, by applying 
simulated annealing to Dijkstra's algorithm.  This algorithm 
first uses a nonlinear energy function to translate multiple QoS 
weights into a single metric and then seeks to find a feasible path 
by simulated annealing.  The paper outlines simulated annealing 
algorithm and analyzes the problems met when we apply it to 
QoSR.  Extensive simulations demonstrate that SA_MCP has 
good scalability regarding both network size and the number of 
QoS constraints with high performance.  Furthermore, when 
most QoS requests are feasible, the running time of SA_MCP is 
about O(k(m+nlogn)), which is only k times that of the traditional 
Dijkstra's algorithm, where k is the number of QoS constraints. 
Keywords-Simulated annealing, energy function, QoS routing, 

multiple constraints, scalability 

I.  INTRODUCTION 

Providing different quality-of-services (QoS) support for 
different applications in the Internet is a challenging issue [1], 
in which QoS Routing (QoSR) is one of the most pivotal 
problems [2].  The main function of QoSR is to find a 
feasible path that satisfies multiple constraints for QoS 
applications.  QoS constraints can be divided into link 
constraints and path constraints. The link constraints of a path 
can be converted to the constraints of the bottleneck link in the 
path, such as bandwidth.  It can be easily dealt with in a 
preprocessing step by pruning all links that do not satisfy these 
constraints and computing a path from the rest sub-graph.  
The path constraint is the restriction of each link along the path, 
such as delay.  We will focus on the path constraint problem 
in this paper. 

Many heuristics have been proposed for the 
multi-constrained QoSR problem because of its 
NP-completeness [4], [5].  However, these algorithms have 
some or all of the following limitations [2]:  (1) High 
computation complexity prevents their practical applications; 
(2) Low performance means that these algorithms sometimes 
cannot find a feasible path even when one does exist.  (3) 
Some algorithms work only for a specific network.  This 
paper proposes a novel heuristic SA_MCP (Simulated 
Annealing for Multi-Constrained Path problem). 

This algorithm first uses a nonlinear energy function to 
translate multiple QoS constraints into a single metric.  The 
shortest path tree (SPT) of the whole network graph is then 

computed by our improved Dijkstra's algorithm with a nonzero 
probability P(T) to select a non-optimal path, where T is the 
temperature for simulated annealing.  The algorithm then 
labels each node according to the current SPT to compute a 
newer SPT with a lower temperature T.  When T decreases to 

0→T , we have 0)(lim 0 =→ TPT .  Based on the theory 
about simulated annealing, SA_MCP is guaranteed to find a 
feasible path when one exists.  Extensive simulations also 
show that SA_MCP performs well in finding a feasible path 
with high probabilities. 

The rest of this paper is organized as follows. In Part II we 
give the problem formulation and summarize the simulated 
annealing.  SA_MCP is proposed in Part III, and extensive 
simulations show the performance evaluation in Part IV. 
Finally, conclusions appear in Part V. 

II.  BACKGROUND INFORMATION 

A. Problem Formulation 
A network is represented by a directed graph G(V,E), where 

V is the node set and an element Vv ∈  is called a node 
representing a router.  E is the set of edges representing links, 
which connect the routers.  An element Eeij ∈  represents 
an edge =e  ji vv →  of G.  In QoSR, each link has a group 
of independent weights ),(),(( 21 ewew  ))(, ewk� , which is 
also called QoS metric )(ew .  For a path 

→= 0vp �→1v nv→  and kl ≤≤1 , the weight 
+∈ Rewl )(  satisfies the additive property if 

∑ = − →= n
i iill vvwpw 1 1 )()( . 

Definition 1. Multi-constrained path 
For a given graph ),( EVG , source node s , destination 

node t , 2≥k  and constraint vector ),,,( 21 kcccc �= , the 
path p  from s  to t  is called multi-constrained path (MCP) 
if ll cpw ≤)(  for any kl ≤≤1 .  We write cpw ≤)(  in 
brief.  

Note )(ew  and c  are also k-dimension vectors.  For a 
given QoS request and its constraints c , QoSR seeks to find 
the path p  based on the present network-state information, 
which satisfies cpw ≤)( .  Dijkstra proposed the shortest 
path tree (SPT) algorithm, which has a low time complexity 
[6].  However, QoSR problem is related to multiple weights 
at the same time.  Thus the problem is changed to an NPC 
one that the original Dijkstra’s algorithm cannot solve in 
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polynomial time.  In this case, one feasible method is to 
translate the multiple weights into a single weight, as follows: 

Definition 2. Energy Function 
We call ))((max)( 1 ll

k
l cpwpg ==  the energy function of 

path p, where ),,,( 21 kcccc �=  is the constraint vector of a 
specific QoS application.  

Because )( pg  is a nonlinear function, Dijkstra's algorithm 
is not guaranteed to find a path with least energy in polynomial 
time. Therefore, we propose a novel heuristic to the 
NP-complete QoSR problem by applying simulated annealing. 

B. Simulated Annealing 
The research on statistical mechanics shows that in 

temperature T, the probability for a molecule of substance to 
stay in the state r satisfies Boltzmann's distribution: 

))(exp(
)(

1)}(Pr{
Tk
rE

TZ
rEE

B
−==  (i) 

E  is the stochastic variable representing the energy of a 
molecule.  E(r) is the energy of a molecule that stays in the 
state r.  T is the temperature.  kB is Boltzmann's constant and 
Z(T) is the normalized factor. 

Annealing is a physical process.  After a metal body is 
heated, when it cools slowly, the molecule of the body stays in 
different states with different probabilities, which satisfies 
Boltzmann's distribution.  Annealing usually requires the 
following two conditions: 

(1) The initial temperature is high enough so that the 
probabilities for a molecule to stay in arbitrary states are 
approximately equal.  If we have 

BkrET )(0 >> , (ii) 

then 00)( ≈TkrE B .  As a result, ≈= )}(Pr{ rEE  
)0(1 TZ , i.e. the probabilities are approximately equal. 

(2) When it cools down so that temperature becomes 0 
degree, all of the molecules will stay in the least energy state 
with the probability being one.  If r* presents the least energy 
state, when 0→T , we have  



 =

==
others

rr
rEE

0
*1

)}(Pr{ . (iii) 

The idea of simulated annealing was first proposed by 
Metropolis [7] and was applied to combinational optimization 
successfully in 1983 [8].  In its basic form, it first generates 
an initial solution as the current solution.  It then selects 
another solution in the neighborhood of the current solution 
and replaces the current solution with the new one.  The same 
process continues iteratively for many times.  Although the 
goal is to find an optimal solution, it selects a non-optimal 
solution with a non-zero probability P(T) to avoid being stuck 
in a local optimization each time.  When the temperature 
decreases, P(T) also decreases.  When 0→T , it is 
guaranteed to find an global optimal solution since P(T)=0. 

III.  SIMULATED ANNEALING BASED HEURISTIC 

A. The Idea of Our SA_MCP 
Because only an end-to-end path is a solution in routing 

computation, the main problem of using simulated annealing 
for QoSR is how to iterate to another solution from the current 
solution in its neighborhood.  To achieve this, we propose a 
method with iteration.  In the process of iteration, we use 
Dijkstra's algorithm to guarantee that the new solution is an 
end-to-end path.  When we calculate the SPT by Dijkstra's 
algorithm, we select with probability P(T) a node that is not 
the current optimal node.  Thus, our SA_MCP can overcome 
the local optimization problem that all heuristics face. 

We assume that each node in the network maintains a 
consistent copy of the global network state information.  For 
a given QoS request from s to t, node s uses our SA_MCP to 
seek a feasible path.  It first uses Dijkstra's algorithm to 
calculate the least-hop SPT rooted by s and marks each node in 
the network.  Then it uses improved Dijkstra's algorithm to 
label each node in iteration.  In each iteration, SA_MCP 
computes new labels based on the labels computed last time.  
At the same time, it selects different links with different 
probabilities P(T) including non-optimal links, where 

0)(lim 0 =→ TPT  satisfies the formula (iii).  After each of 
iterations, the temperature T decreases.  When the algorithm 
iterates enough times, we guarantee 0→T . 

B. Pseudo-code Description 
Fig. 1 and Fig. 2 show the pseudo-code of the algorithm, 

where SA_MCP is the main function.  The input of SA_MCP 
includes a given graph with multiple QoS weights, a QoS 
request from s to T and a constraint vector ),,,( 21 kcccc �= .  
In addition, we can configure the initial temperature (T0), the 
gradient of cooling down the temperature (grad) and the 
iteration time (I).  If the k-dimensional weight d[t] of the 
forward least energy path from s to T satisfies the constraint c, 
the algorithm returns the path successfully.  Otherwise, it 
refuses the request.  Table I shows the notations used in the 
pseudo-code. 

1. Function SA_MCP 
In function SA_MCP, we first use Dijkstra's algorithm to 

compute the least hop SPT rooted by s (Line 2), where the 
initial solution is the path along the SPT from s to t.  We then 
compute the new SPT by simulated annealing (SA_Dijkstra) 
backwards and forwards including (1) computing the SPT 
rooted by T (Line 5); (2) computing the SPT rooted by s (Line 
8).  After the whole SPT is computed each time by Dijkstra's 
algorithm or SA_Dijkstra, d[.] is updated to save the newly 
computed weights from the new SPT to source s (Line 12-13 
in function SA_Dijkstra).  SA_Dijkstra computes SPT based 
on the d[.] updated last time (Line 1 in function SA_Relax).  
In addition, after a new SPT is constructed, the path along this 
SPT from s to T is judged to see whether it satisfies the 
constraint c.  If it does, the algorithm then returns the path 
successfully (Line 3, 6 and 9).  We need to set the 
temperature T for simulated annealing to construct SPT in 
SA_Dijkstra each time (Line 7 and 10). 

2. Function SA_Dijkstra 
Based on the original Dijkstra's algorithm [6], we propose 

the SA_Dijkstra function, which seeks the least energy tree by 
simulated annealing.  The function first initializes variables 
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(Line 1-5).  Then when NB is not empty (Line 6), it selects 
the optimal node u in NB by simulated annealing (Line 7) and 
adds the selected node to the current partial SPT (Line 8).  
Finally, it relaxes u's neighbors that are not in the SPT (Line 
9-11).  After it creates the whole SPT, the weight r[t] of the 
path along this SPT from root to each node T is saved in the 
global variable d[t] for computing new SPT next time (Line 
12-13). 

3. Function SA_Cheapest 
This function presents the idea of simulated annealing: a 

non-optimal node will be selected with a certain probability 
and the probability decreases to zero when temperature T 
decreases enough.  In the first line of SA_Cheapest, 

lll
k
l cvdvr ])[][(max 1 +=  is the energy of a path defined by 

definition 1.  ][vrl  is the forward weight, i.e. the l 'th weight 
of the path from the root of the current SPT to node v.  ][vdl  
is the backward weight, i.e. the l 'th weight of the path from 

node v to the root of the old SPT calculated last time.  The 
backward weight is saved when the old SPT is computed last 
time (Line 12-13 in function SA_Dijkstra).  SA_Cheapest 
first selects the least energy g* of the neighbors of the current 
SPT (Line 1).  It then computes the energy E(v) for simulated 
annealing (Line 2-3), which guarantees the least energy to be 0.  
Then the normal factor Z(T) in formula (i) is calculated (Line 
4).  Finally, a node u, which will be added to the partially 
created SPT, is selected according to the probability 
distribution in formula (i) (Line 5-9). 

4. Function addNode 
Similar to the original Dijkstra's algorithm, when node u is 

added to the partially created SPT, we use this function to 
change the set NB, which is the neighborhood of node u.  
This includes two parts: deleting node u from NB (Line 1), and 
adding u's neighbors that are not in the current SPT to NB 
(Line 3-5). 

5. Function SA_Relax 
We relax node v with node u being v's parent.  The energy 

SA_Dijkstra(G,root,T) 
1. FOR each node T in G 
2.   g[t]=INFINITY 
3. SPT={root} 
4. r[root]=0 
5. NB={root's neighbors} 
6. WHILE NB is not empty 
7.   u=SA_Cheapest(NB, T) 
8.   addNode(SPT,u,NB) 
9.   FOR each node v in u's neighbor 
10.    IF v is not in SPT THEN 
11.      SA_Relax(u, v) 
12.FOR each node T in G 
13.  d[t]=r[t] 
 
SA_MCP(G=(V,E), s, t, c, T0, grad, I) 
1. T=T0 
2. Dijkstra(G,s); //get an initial solution 
3. IF (d[t]<c) RETURN this path 
4. FOR( i=0; i<I; i++) 
5.   SA_Dijkstra(G,t,T); // min g(p) 
6.   IF (d[s]<c) RETURN this path 
7.   T=T/grad 
8.   SA_Dijkstra(G,sT); // min g(p) 
9.   IF (d[t]<c) RETURN this path 
10.  T=T/grad 
11.RETURN failure 
 

Fig. 1.  Pseudo-code of SA_MCP 

TABLE I 
NOTATIONS IN THE PSEUDO-CODE OF SA_MCP 

Symbol Meanings Symbol Meanings 
T0 initial temperature root the root node for calculating the current SPT 

)(vE  the energy of node v in formula (i) d[u] backward weights: the k-dimensional weights of the path 
along the old SPT from its root to u  

grad gradient for decreasing temperature v a child node of node u 
I maximum number of iterations Πr[v] the precedent node of node v 
Dijkstra(G,s) original Dijkstra's algorithm for SPT rooted by s g[u] the energy of node u 
u an intermediate node NB the set of the neighbors of the current SPT 
SA_Dijkstra 
(G,s,T) 

a heuristic for SPT rooted by s based on simulated 
annealing, where T is the temperature r[u] forward weights: the k-dimensional weights of the path 

along the current SPT from its root to u  
Z the normal factor in formula (i) g* a locally minimal energy 
c k-dimensional constraints of a QoS request SPT a partially created SPT 

SA_Cheapest(NB, T) 
1. g*= lll

k
lNBv cvdvr ])[][(maxmin 1 +=∈  

2. FOR each v in NB 
3.   )(vE = lll

k
l cvdvr ])[][(max 1 += -g* 

4. ∑ ∈ −= NBv TvEZ )/)(exp(  

5. x= ×Z uniform(0,1) 
6. sum=0 
7. FOR each u in NB 
8.   sum=sum+ )/)(exp( TuE−  
9.   IF sum>=x THEN RETURN u 
 
addNode(SPT,u,NB) 
1. NB=NB-{u} 
2. SPT=SPT+{u} 
3. FOR each node v in u's neighbor 
4.   IF v is not in SPT THEN 
5.     NB=NB+{v} 
 
SA_Relax(u, v) 
1. tmp= llll

k
l cvdvuwur ])[),(][(max 1 ++=  

2. IF g[v]>tmp THEN 
3.   g[v]=tmp 
4.   r[v]=r[u] + w(u,v) 
5.   Πr[v]=u 
 

Fig. 2.  Sub-functions of SA_Dijkstra 
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of v via u is computed (Line 1).  If this new energy of v is 
smaller than the old one (Line 2), node v will be relaxed to use 
the new energy (Line 3), the forward weight (Line 4) and the 
precedent node (Line 5).  

C. Complexity and Parameters 
We now analyze the computation complexity of SA_MCP.  

In the network graph G(V,E) with k metrics, we assume m=|E| 
is the number of edges and n=|V| is the number of nodes.  
Since the computation complexity of the improved Dijkstra's 
algorithm is O(m+nlogn), that of function SA_Dijkstra is 
O(km+knlogn).  As a result, including the recursion, the 
overall computation complexity of SA_MCP is O(Ik(m+ 
nlogn)), where I is the maximum number of iterations.  
Because the feasibility of a path newly found is checked before 
the next iteration, when most of the QoS requests are feasible, 
only some of them need to iterate for multiple times.  
Therefore, the above complexity is the worst-case one.  In 
fact, the running time of our SA_MCP is almost independent 
of the maximum number of iterations as we are going to show 
in part IV. 

Simulated annealing requires selecting a new solution 
randomly enough at the beginning, i.e. a high enough initial 
temperature T0. Because the energy E(v) is often much less 
than 1 in SA_MCP, it suffices to set T0=1 to satisfy formula 
(ii).  In addition, simulated annealing also requires that when 
the temperature 0→T , all of the molecules stay in the state 
with the least energy.  Thus, in order to decrease the 
temperature quickly, we select grad=10 according to the 
geometric proportion.  In this way, after 2I times of iteration, 
the temperature IIT 210)2( −= <<E(v) satisfies formula (iii).  
The following simulations show that such parameters achieve 
high performance. 

IV.  PERFORMANCE EVALUATION 

About the performance of our algorithm, we will show (1) 
the relationship between the distribution of QoS constraints 
and the performance of our SA_MCP with only two 
constraints, and (2) the performance with multiple constraints.  
In each part, SA_MCP is compared with H_MCOP [9], [10], 
which is a good heuristic in the literature. 

In each experiment, we simulate purely random network 
graphs with N nodes [11] and generate k weights for each link, 
where )(ewl ~uniform[1,1000] for kl ,,2,1 �=  and )(ewl  
has no correlation for different e  or l .  We simulate 10 
graphs with N  being 50, 100, 200 and 500, respectively.  In 
each graph, we select the source-destination node pair (s,t) 100 
times (a particular node may be selected more than once), 
where we guarantee that the minimum hop is not less than two.  
Each source node s uses SA_MCP to compute the least energy 
path for different numbers of iterations respectively.  For 
performance evaluation, we use the success ratio (SR), which 
is defined as the ratio of the number of requests satisfied using 
a heuristic algorithm and the total number of requests 
generated.  We first get SR of the 100 (s,t) pairs in one graph, 
and then calculate the average SR of 10 graphs with same 
number of nodes. 

A. The Performance with Two Constraints 
The evaluation depends heavily on the generated constraints 

of the requests, e.g. the distribution of constraints.  Therefore, 
based on the normalized weights in the whole graph, for a 
given request pair ),( ts , we use the method of weighted ratio 
simulation to generate the constraints.  First, we assume that 
each QoS application concerns the weight lw  to la  degree.  
Then we use Dijkstra's algorithm to find the path p(s,t) that 
minimizes the linear energy =),( tsg ∑ =

k
l ll tswa1 ),( . Finally, 

we take the weights of the path p(s,t) as the QoS constraints of 
the pair ),( ts , i.e. c(s,t)= w(p(s,t)). 

In the case of two dimensions, we let ]1,0[1 ∈a  and 

12 1 aa −=  for simplicity.  Because different QoS 
applications concern a weight to different degrees, we use the 
following three methods to generate a .  (1) NORMAL: 

1a ~normal(0.5,0.16); (2) UNIFORM: 1a ~uniform(0,1); (3) 
AB_NORMAL: 1a ~normal(0,0.16) and ]5.0,0[1 ∈a .  In 
order to guarantee that the difference between 1a  and the 
expectation are less than 0.5 with the probability of 99.7%, we 
set the standard deviation to be 0.16 in NORMAL and 
AB_NORMAL distributions. 

The relation between the maximum number of iterations and 
the performance of our SA_MCP is shown in Fig. 3 against 
H_MCOP.  The x-axis is the method to generate QoS 
constraints, and the y-axis is the success ratio (SR) 
representing the performance of heuristic routing.  With only 
a few iterations (e.g. I=1), SA_MCP does not perform well.  
The main reason is that T0=1 is much greater than energy E(v) 
and the strong randomicity cannot guarantee an optimal path.  
With more iterations, the performance of SA_MCP increases 
rapidly and reaches almost 100%.  This shows that the 
simulated annealing can increase the performance of QoSR 
greatly. 

H_MCOP has different performance with different QoS 
constraints.  The reason is that when it computes the SPT for 
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Fig. 3.  Performance evaluation with two constraints 
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the first time, it concerns the two weights to the same degree.  
Therefore, when applications concern the two weights to the 
same degree (normal distribution in Fig. 3), H_MCOP 
performs well; otherwise, it will degrade, especially in the 
ab_normal distribution.  On the contrary, our SA_MCP 
performs well in all conditions, including different 
distributions of QoS constraints and different network scales.  

B. Performance with Multiple Constraints 
In order to study the relation between the maximum number 

of iterations and the performance of SA_MCP, we use the 
following method to generate the constraints for a given (s,t).  
We first take the random number )1,0(~ uniformbl  for 

kl ,,2,1 �=  and calculate ∑ == k
l lll bba 1 .  We then 

construct the least energy path from s to T according to the 
energy function ∑ ==′ k

l ll pwapg 11 ))(()(  and take the weights 
of the path as the constraints of the given (s,t), i.e. 

)(),( ipwtsc = .   
Fig. 4 shows the performance for multiple constraints, 

where the x-axis is the number of constraints and the y–asix is 
SR.  SA_MCP performs well for large k, while H_MCOP 
does not.  Furthermore, our SA_MCP has good scalability on 
the size of network with multiple constraints. 

C. Analysis of Running Time 
In order to analyze the relationship between the running 

time and the maximum number of iterations, we measure the 
running time of SA_MCP on a PC running MS Windows 2000 
with a Pentium III 933 CPU and a 256M memory.  As an 
example, Table II shows the running time with N=500 and 
k=10.  In most cases the heuristic can find a feasible path with 
only one iteration.  Therefore, the running time depends on 
the maximum number of iterations lightly instead of the 

linearity in theory, as shown in Table II.  Such a relation 
further confirms the conclusion of Fig 4, i.e. a feasible path 
can be found with only a few iterations. 

V.  CONCLUSION 

For the NP-completeness of multi-constrained QoSR 
problem, there is no efficient algorithm up to now.  We 
propose a novel heuristic SA_MCP based on simulated 
annealing.  The paper summarizes simulated annealing, and 
analyzes both the difficulty and our solution by applying it to 
the routing computation.  Our SA_MCP first takes the 
least-hop SPT as the initial solution and marks all of the nodes 
in the network.  It then computes a new SPT and sets new 
labels again in simulated annealing iteration mode, until the 
path along the new SPT is feasible or maximum iteration time 
is reached.  In each iteration, it uses the current labels to seek 
the least energy SPT with a nonlinear energy function.  
Extensive simulations show that SA_MCP has high 
performance and good scalabilities with respect to both 
network scale and constraint number (k).  Furthermore, it is 
insensitive to the distribution of QoS constraints.  In addition, 
although the worst-case computation complexity is 
O(Ik(m+nlogn)), which is proportional to the maximum 
iteration time I, the running time is about O(k(m+nlogn)), 
which is independent of I. 
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Fig. 4.  Performance evaluation with multiple constraints 

TABLE II 
THE RUNNING TIME OF PROPOSED SA_MCP 

the maximum number of 
iterations  I=1 I=2 I=3 H_MCOP 

running time(millisecond) 19.54 20.36 21.07 21.90 
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